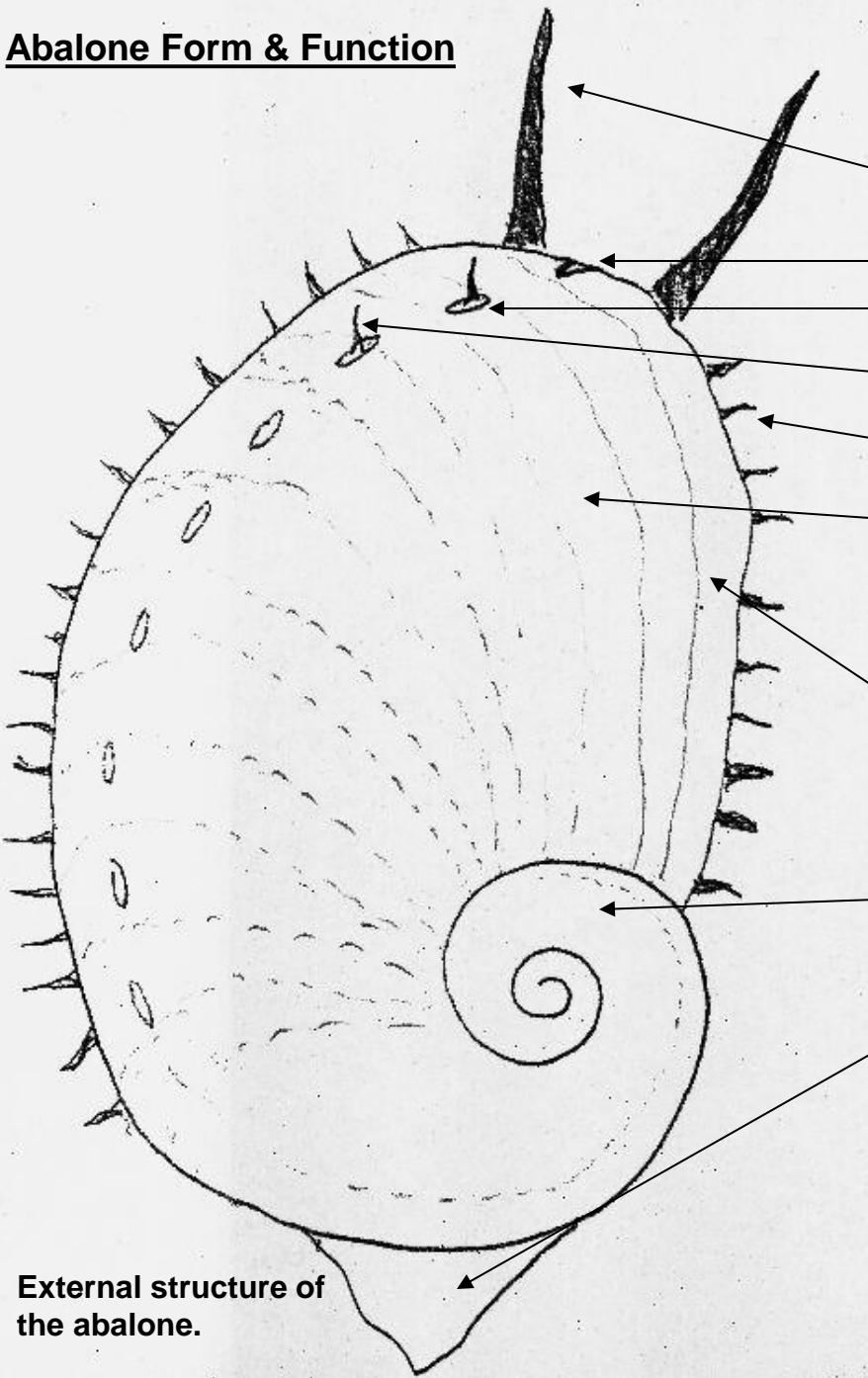


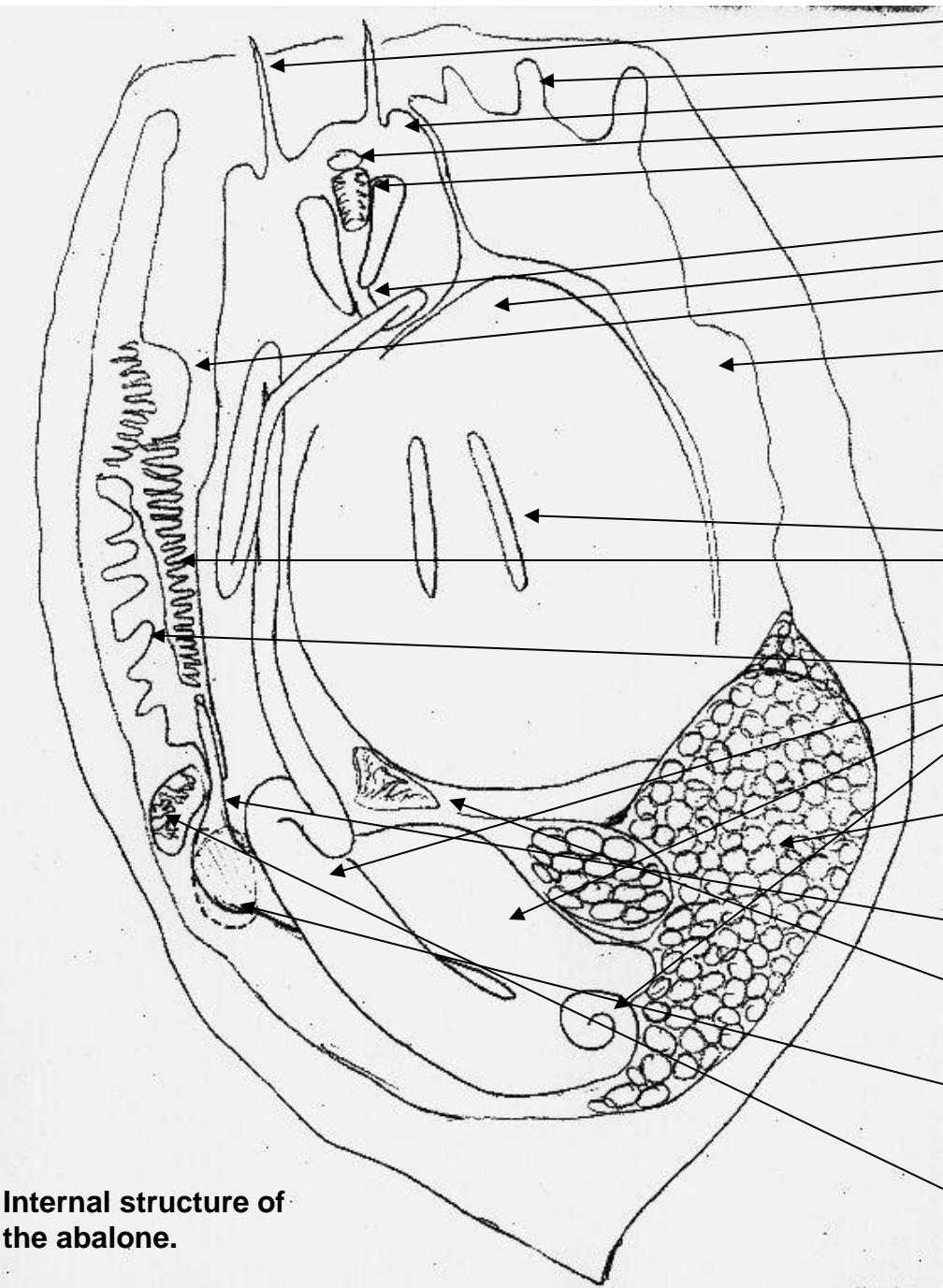
ABALONE in a snap shot

- Anatomy
- Environmental requirements
- Health testing protocol

The Fish Vet


Dr Richmond Loh DipProjMgt, BSc, BVMS, MANZCVS (Aquatics & Pathobiol), MPhil (Pathol), CertAqV
www.thefishvet.com.au

Tel: +61 421 822 383
Email: thefishvet@gmail.com


ABN: 83 072 433 594

Abalone Form & Function

- **Cephalic tentacle**
- **Notch**
- **Respiratory pore** allows outflow of water carrying used water, faeces, urine, gametes.
- **Respiratory/Palial tentacles** occupy the respiratory apertures keeping them open.
- **Epipodial tentacles**, sensory function.
- **Shell**
 - Periostracum
 - organic layer
 - Outer prismatic layer
 - Calcite crystals
 - Inner nacreous layer
 - aragonite
- **Growth rings** brought about by changes in growth due to water temperature and food availability.
- **Spire**
- **Epipodium**, a skirt-like extension of the foot.
- **Foot**

Internal structure of the abalone.

- **Cephalic tentacle**
- **Epipodium & epipodial tentacle**
- **Eye**
- **Snout & mouth**
- **Radula** composed of a chitinous ribbon supported by a pair of cartilaginous
- **Oesophagus**
- **Shell muscle**
- **Osphradia** tests water quality (smells and tastes), sensing when to shut off the respiratory chamber.
- **Mantle** a sheet of loose connective tissue containing muscle fibres and rich supply of nervous and vascular elements covered by epithelium, produces the periostracum (organic layer of the shell). Also functions as an accessory respiratory organ.
- **Pedal nerve**
- **Gills (ctenidia)**, the bilateral leaflets (lamellae) arise from a central axis (rachis). They function to transport blood, for gaseous exchange and water movement.
- **Hypobranchial gland** produces mucus.
- **Crop** stores ingested food awaiting digestion.
- **Stomach**
- **Spiral caecum** receives secretions from the digestive tubules.
- **Digestive tubules** consists of a mass of blind-ending digestive tubules joined by ducts produce enzymes to digest proteins, lipids & carbohydrates.
- **Rectum** empties faeces into the respiratory chamber for expulsion.
- **Right kidney** has a filtering function - similar to the terrestrial kidney. Gametes also pass through this organ upon exit.
- **Heart** wraps around the rectum. Mechanically pumps the haemolymph and also has a filtration function for urine production.
- **Left kidney** located next to heart & rectum has a bag-like structure and play a role in defence - similar to the terrestrial spleen.

Abalone Biology & Culture Requirements

Species

Haliotis rubra = Blacklip abalone

Haliotis laevigata = Greenlip abalone

Haliotis roei = Roe's abalone

Haliotis conicopora = Brownlip abalone

Haliotis scalaris = Staircase abalone

Survival

Larvae 30-40% (up to 90% if antibiotics used)

Settlement 20-40% (up 60% in some instances)

Grow to 100mm in 12-18 months

Diet

Larvae: First 2 weeks on diatoms & then *Uvella lens*.

4-5 mm: *Navicula* diatom

>5 mm: Pelleted diet

Water movement

Water flow optimal between 3-15 L/min (higher in hatchery, ~3.5L/min in growout).

Feed intake increases with higher water movement (in the wild, this is when abalone "catch" fragmented algae).

Suspended solids

Faecal wastes are mildly acidic, anoxic and chemically reduced. Decreasing fibre in food will decrease solid wastes.

Water Temperature (WT)

Optimal for Greenlip 18.3°C with range 17-19°C

Optimal for Blacklip 17.0°C with range 17-24°C

Diurnal variations may also impact growth rates.

If WT >26°C, morts occur ~2w later (immature stock more resistant). Elevated WT → ↑ innate anti-viral activity, but ↓ innate anti-bacterial activity.

pH

Greenlip 7.78-8.77 (optimal)

Blacklip 7.93-8.46

Hazardous if <7.16 or >9.01

Haemolymph calcium begins to be mobilised at pH 7.76.

Salinity

Optimal 35 ppt

Greenlip & Blacklip 25-40 ppt

Better recovery from low salinity rather than high salinity.

Stocking density

No more than 40 kg/m²

Average commercially 10 kg/m²

Oxygen

Low DO for 24h → lowered immunity.

DO <80% → ciliate infestation.

DO <4.3mg/L (>56% saturation) → increased mucus cells in gills.

Ammonia

Chronic exposure is detrimental and its effect depends on the interaction with dissolved oxygen.

>0.073 mg/L FAN → decreased growth.

>0.188 mg/L FAN → histological changes in right kidney.

Nitrite

Even low concentrations can be detrimental.

>0.43 mg/L → decreased growth.

>7.8 mg/L → histological changes.

Refuge

Increases productivity at high density.

Anaesthetics

All have depressive effects on growth rates. Moving abs is a real stressor and especially at higher temperatures.

Magnesium sulfate appears to have the least side-effects, followed by benzocaine.

Diagnostic techniques

Iodine

Use iodine to visualise abscesses grossly (stains up the carbohydrates).

Mudworm – Vermifuge

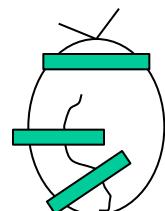
50% ethanol + 50% seawater

Phenyl solution

Incubate shells at room temperature overnight and examine sieved material.

Haemocyte count

Draw haemolymph from the junction between the mouth and the foot with a 25G needle and syringe.


Bacteriology

Culture haemolymph and swabs from gill.

Perkinsus test

Incubate at room temperature, sections of foot muscle in Ray's fluid thioglycolate media for 5-7 days in the dark to encourage sporulation by parasite. Examine material microscopically.

Other organs may also be included: gills, gut, gonad, right kidney.

Histology

Used to detect presence of any other diseases.

3 routine sections are sampled for testing.

References:

Illustrations by R. Loh.

Abalone form & function summarised from:

Bevelander, G (1988) ***Abalone Gross and Fine Structure***. Boxwood Press, U.S.A.

Abalone biology & culture requirements summarised from:

Burke, CM, Harris, JO, Hindrum, SM, Edwards SJ & Maguire GB (2001) ***Environmental requirements of abalone***. University of Tasmania, Australia.

Harris JO, Stone DAJ (2015) ***Understanding and reducing summer mortality in cultured Australian abalone***. 3rd FRDC Australasian Aquatic Animal Health Scientific Conference, 6-10 July, Cairns, Queensland.

And other sources.

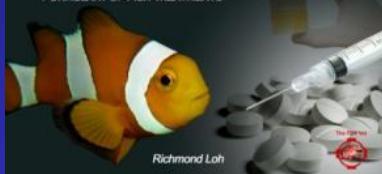
Diagnostic techniques based on personal experience.

The Fish Vet

Dr Richmond Loh *DipProjMgt, BSc, BVMS, MANZCVS (Aquatics & Pathobiol), MPhil (Pathol), CertAqV*
www.thefishvet.com.au

Tel: +61 421 822 383
Email: thefishvet@gmail.com

ABN: 83 072 433 594


**FISH
VETTING
ESSENTIALS**

Dr Richmond Loh
&
Dr Matt Landos

**FISH VETTING
MEDICINES**

FORMULARY OF FISH TREATMENTS

**FISH VETTING TECHNIQUES
& PRACTICAL TIPS**

Instructional Video
Dr Richmond Loh

PAL

THE FISH VET

Dr Richmond Loh

DipProjMgt, BSc, BVMS, MPhil, MANZCVS, CertAqV

thefishvet@gmail.com

+61 (0)421 822 383

thefishvet.com.au

@thefishvet

thefishvet.com

au.linkedin.com/pub/dir/Richmond/Loh

youtube.com/thefishvetdrloh

facebook.com/thefishvetdrloh

